163 research outputs found

    Biodiversity of the Great Barrier Reef: how adequately is it protected?

    Get PDF
    Background: The Great Barrier Reef (GBR) is the world's most iconic coral reef ecosystem, recognised internationally as a World Heritage Area of outstanding significance. Safeguarding the biodiversity of this universally important reef is a core legislative objective; however, ongoing cumulative impacts including widespread coral bleaching and other detrimental impacts have heightened conservation concerns for the future of the GBR. Methods: Here we review the literature to report on processes threatening species on the GBR, the status of marine biodiversity, and evaluate the extent of species-level monitoring and reporting. We assess how many species are listed as threatened at a global scale and explore whether these same species are protected under national threatened species legislation. We conclude this review by providing future directions for protecting potentially endangered elements of biodiversity within the GBR. Results: Most of the threats identified to be harming the diversity of marine life on the GBR over the last two-three decades remain to be effectively addressed and many are worsening. The inherent resilience of this globally significant coral reef ecosystem has been seriously compromised and various elements of the biological diversity for which it is renowned may be at risk of silent extinction. We show at least 136 of the 12,000+ animal species known to occur on the GBR (approximately 20% of the 700 species assessed by the IUCN) occur in elevated categories of threat (Critically Endangered, Endangered or Vulnerable) at a global scale. Despite the wider background level of threat for these 136 species, only 23 of them are listed as threatened under regional or national legislation. Discussion: To adequately protect the biodiversity values of the GBR, it may be necessary to conduct further targeted species-level monitoring and reporting to complement ecosystem management approaches. Conducting a vigorous value of information analysis would provide the opportunity to evaluate what new and targeted information is necessary to support dynamic management and to safeguard both species and the ecosystem as a whole. Such an analysis would help decision-makers determine if further comprehensive biodiversity surveys are needed, especially for those species recognised to be facing elevated background levels of threat. If further monitoring is undertaken, it will be important to ensure it aligns with and informs the GBRMPA Outlook five-year reporting schedule. The potential also exists to incorporate new environmental DNA technologies into routine monitoring to deliver high-resolution species data and identify indicator species that are cursors of specific disturbances. Unless more targeted action is taken to safeguard biodiversity, we may fail to pass onto future generations many of the values that comprise what is universally regarded as the world's most iconic coral reef ecosystem

    Assay validation and interspecific comparison of salivary glucocorticoids in three amphibian species

    Get PDF
    Amphibians are one of the most threatened groups of species, facing stressors ranging from habitat degradation and pollution to disease and overexploitation. Stress hormones (glucocorticoids, GCs) provide one quantitative metric of stress,and developing non-invasive methods for measuring GCs in amphibians would clarify how diverse environmental stressors impact individual health in this taxonomic group. Saliva is an advantageous matrix for quantifying GCs, as it is sampled less invasively than plasma while still detecting both baseline and acute elevation of GCs within a short timeframe. Little work has employed this method in amphibian species, and it has never been pharmacologically and biologically validated. Here, we conduct analytical, pharmacological and biological validation experiments for measuring salivary corticosterone in three amphibian species: the American bullfrog (Rana catesbeiana), the green frog (Rana clamitans) and the northern leopard frog (Rana pipiens). These species are faced with a broad range of environmental challenges, and in part of its range R. pipiens populations are currently in decline. In addition to demonstrating that this method can be reliably used in multiple amphibian species, we present an examination of intrinsic biological factors (sex, body condition) that may contribute to GC secretion, and a demonstration that saliva can be collected from free-living animals in the field to quantify corticosterone. Our findings suggest that saliva may be useful for less invasively quantifying GCs in many amphibian species

    Integrated evidence reveals a new species in the ancient blue coral genus Heliopora (Octocorallia)

    Get PDF
    Maintaining the accretion potential and three dimensional structure of coral reefs is a priority but reef-building scleractinian corals are highly threatened and retreating. Hence future reefs are predicted to be dominated by non-constructional taxa. Since the Late Triassic however, other non-scleractinian anthozoans such as Heliopora have contributed to tropical and subtropical reef-building. Heliopora is an ancient and highly conserved reef building octocoral genus within the monospecific Family Helioporidae, represented by a single extant species – H. coerulea, Pallas, 1766. Here we show integrated morphological, genomic and reproductive evidence to substantiate the existence of a second species within the genus Heliopora. Importantly, some individuals of the new species herein described as Heliopora hiberniana sp. nov. feature a white skeleton indicating that the most diagnostic and conserved Heliopora character (the blue skeleton) can be displaced. The new species is currently known only from offshore areas in north Western Australia, which is a part of the world where coral bleaching events have severely impacted the scleractinian community over the last two decades. Field observations indicate individuals of both H. coerulea and H. hiberniana sp. nov. were intact after the 2016 Scott Reef thermal stress event, and we discuss the possibility that bleaching resistant non-scleractinian reef builders such as Heliopora could provide new ecological opportunities for the reconfiguration of future reefs by filling empty niches and functional roles left open by the regression of scleractinian corals

    Evolutionary Responses of a Reef-building Coral to Climate Change at the End of the Last Glacial Maximum

    Get PDF
    Climate change threatens the survival of coral reefs on a global scale, primarily through mass bleaching and mortality as a result of marine heatwaves. While these short-term effects are clear, predicting the fate of coral reefs over the coming century is a major challenge. One way to understand the longer-term effect of rapid climate change is to examine the response of coral populations to past climate shifts. Coastal and shallow-water marine ecosystems such as coral reefs have been reshaped many times by sea-level changes during the Pleistocene, yet few studies have directly linked this with its consequences on population demographics, dispersal, and adaptation. Here we use powerful analytical techniques, afforded by haplotype-phased whole-genomes, to establish such links for the reef-building coral, Acropora digitifera. We show that three genetically distinct populations are present in northwestern Australia, and that their rapid divergence since the last glacial maximum (LGM) can be explained by a combination of founder-effects and restricted gene flow. Signatures of selective sweeps, too strong to be explained by demographic history, are present in all three populations and overlap with genes that show different patterns of functional enrichment between inshore and offshore habitats. In contrast to rapid divergence in the host, we find that photosymbiont communities are largely undifferentiated between corals from all three locations, spanning almost 1000 km, indicating that selection on host genes, and not acquisition of novel symbionts, has been the primary driver of adaptation for this species in northwestern Australia

    Phylogeography of recent <i>Plesiastrea</i> (Scleractinia::Plesiastreidae) based on an integrated taxonomic approach

    Get PDF
    Scleractinian corals are a diverse group of ecologically important yet highly threatened marine invertebrates, which can be challenging to identify to the species level. An influx of molecular studies has transformed scleractinian systematics, highlighting that cryptic species may be more common than previously understood. In this study, we test the hypothesis that Plesiastrea versipora (Lamarck, 1816), a species currently considered to occur throughout the Indo-Pacific in tropical, sub-tropical and temperate waters, is a single species. Molecular and morphological analyses were conducted on 80 samples collected from 31 sites spanning the majority of the species putative range and twelve mitogenomes were assembled to identify informative regions for phylogenetic reconstruction. Congruent genetic data across three gene regions supports the existence of two monophyletic clades aligning with distinct tropical and temperate provenances. Multivariate macromorphological analyses based on 13 corallite characters provided additional support for the phylogeographic split, with the number of septa and corallite density varying across this biogeographic divide. Furthermore, micromorphological and microstructural analyses identified that the temperate representatives typically develop sub-cerioid corallites with sparse or absent coenosteal features and smooth septal faces. In contrast, tropical representatives typically develop plocoid corallites separated by a porous dissepimental coenosteum and have granulated septal faces. These data suggest that at least two species exist within the genus PlesiastreaMilne Edwards & Haime, 1848. Based on examination of type material, we retain the name Plesiastrea versipora (Lamarck, 1816) for the temperate representatives of the genus and resurrect the name Plesiastrea peroniMilne Edwards & Haime, 1857 for the tropical members. This study highlights how broadly distributed hard coral taxa still need careful re-examination through an integrated systematics approach to better understand their phylogeographic patterns. Furthermore, it demonstrates the utility of integrating micro-, macro-morphological and genetic datasets, and the importance of type specimens when dealing with taxonomic revisions of scleractinian taxa

    Spatially varying selection between habitats drives physiological shifts and local adaptation in a broadcast spawning coral on a remote atoll in Western Australia

    Get PDF
    At the Rowley Shoals in Western Australia, the prominent reef flat becomes exposed on low tide and the stagnant water in the shallow atoll lagoons heats up, creating a natural laboratory for characterizing the mechanisms of coral resilience to climate change. To explore these mechanisms in the reef coral Acropora tenuis, we collected samples from lagoon and reef slope habitats and combined whole-genome sequencing, ITS2 metabarcoding, experimental heat stress, and transcriptomics. Despite high gene flow across the atoll, we identified clear shifts in allele frequencies between habitats at relatively small linked genomic islands. Common garden heat stress assays showed corals from the lagoon to be more resistant to bleaching, and RNA sequencing revealed marked differences in baseline levels of gene expression between habitats. Our results provide new insight into the complex mechanisms of coral resilience to climate change and highlight the potential for spatially varying selection across complex coral reef seascapes to drive pronounced ecological divergence in climate-related traits

    A hybrid-capture approach to reconstruct the phylogeny of Scleractinia (Cnidaria: Hexacorallia)

    Get PDF
    A well-supported evolutionary tree representing most major lineages of scleractinian corals is in sight with the development and application of phylogenomic approaches. Specifically, hybrid-capture techniques are shedding light on the evolution and systematics of corals. Here, we reconstructed a broad phylogeny of Scleractinia to test previous phylogenetic hypotheses inferred from a few molecular markers, in particular, the relationships among major scleractinian families and genera, and to identify clades that require further research. We analysed 449 nuclear loci from 422 corals, comprising 266 species spanning 26 families, combining data across whole genomes, transcriptomes, hybrid capture and low-coverage sequencing to reconstruct the largest phylogenomic tree of scleractinians to date. Due to the large number of loci and data completeness (less than 38% missing data), node supports were high across shallow and deep nodes with incongruences observed in only a few shallow nodes. The “Robust” and “Complex” clades were recovered unequivocally, and our analyses confirmed that Micrabaciidae Vaughan, 1905 is sister to the “Robust” clade, transforming our understanding of the “Basal” clade. Several families remain polyphyletic in our phylogeny, including Deltocyathiidae Kitahara, Cairns, Stolarski &amp; Miller, 2012, Caryophylliidae Dana, 1846, and Coscinaraeidae Benzoni, Arrigoni, Stefani &amp; Stolarski, 2012, and we hereby formally proposed the family name Pachyseridae Benzoni &amp; Hoeksema to accommodate Pachyseris Milne Edwards &amp; Haime, 1849, which is phylogenetically distinct from Agariciidae Gray, 1847. Results also revealed species misidentifications and inconsistencies within morphologically complex clades, such as Acropora Oken, 1815 and Platygyra Ehrenberg, 1834, underscoring the need for reference skeletal material and topotypes, as well as the importance of detailed taxonomic work. The approach and findings here provide much promise for further stabilising the topology of the scleractinian tree of life and advancing our understanding of coral evolution

    Selecting coral species for reef restoration

    Get PDF
    1. Humans have long sought to restore species but little attention has been directed at how to best select a subset of foundation species for maintaining rich assemblages that support ecosystems, like coral reefs and rainforests, which are increasingly threatened by environmental change. 2. We propose a two-part hedging approach that selects optimized sets of species for restoration. The first part acknowledges that biodiversity supports ecosystem functions and services, and so it ensures precaution against loss by allocating an even spread of phenotypic traits. The second part maximizes species and ecosystem persistence by weighting species based on characteristics that are known to improve ecological persistence—for example abundance, species range and tolerance to environmental change. 3. Using existing phenotypic-trait and ecological data for reef building corals, we identified sets of ecologically persistent species by examining marginal returns in occupancy of phenotypic trait space. We compared optimal sets of species with those from the world's southern-most coral reef, which naturally harbours low coral diversity, to show these occupy much of the trait space. Comparison with an existing coral restoration program indicated that current corals used for restoration only cover part of the desired trait space and programs may be improved by including species with different traits. 4. Synthesis and applications. While there are many possible criteria for selecting species for restoration, the approach proposed here addresses the need to insure against unpredictable losses of ecosystem services by focusing on a wide range of phenotypic traits and ecological characteristics. Furthermore, the flexibility of the approach enables the functional goals of restoration to vary depending on environmental context, stakeholder values, and the spatial and temporal scales at which meaningful impacts can be achieved

    Evolutionary Responses of a Reef-building Coral to Climate Change at the End of the Last Glacial Maximum

    Get PDF
    Climate change threatens the survival of coral reefs on a global scale, primarily through mass bleaching and mortality as a result of marine heatwaves. While these short-term effects are clear, predicting the fate of coral reefs over the coming century is a major challenge. One way to understand the longer-term effect of rapid climate change is to examine the response of coral populations to past climate shifts. Coastal and shallow-water marine ecosystems such as coral reefs have been reshaped many times by sea-level changes during the Pleistocene, yet few studies have directly linked this with its consequences on population demographics, dispersal, and adaptation. Here we use powerful analytical techniques, afforded by haplotype-phased whole-genomes, to establish such links for the reef-building coral, Acropora digitifera. We show that three genetically distinct populations are present in northwestern Australia, and that their rapid divergence since the last glacial maximum (LGM) can be explained by a combination of founder-effects and restricted gene flow. Signatures of selective sweeps, too strong to be explained by demographic history, are present in all three populations and overlap with genes that show different patterns of functional enrichment between inshore and offshore habitats. In contrast to rapid divergence in the host, we find that photosymbiont communities are largely undifferentiated between corals from all three locations, spanning almost 1000 km, indicating that selection on host genes, and not acquisition of novel symbionts, has been the primary driver of adaptation for this species in northwestern Australia

    Some Rare Indo-Pacific Coral Species Are Probable Hybrids

    Get PDF
    Background: coral reefs worldwide face a variety of threats and many coral species are increasingly endangered. It is often assumed that rare coral species face higher risks of extinction because they have very small effective population sizes, a predicted consequence of which is decreased genetic diversity and adaptive potential.\ud \ud Methodology/Principal Findings: here we show that some Indo-Pacific members of the coral genus Acropora have very small global population sizes and are likely to be unidirectional hybrids. Whether this reflects hybrid origins or secondary hybridization following speciation is unclear.\ud \ud Conclusions/Significance: the interspecific gene flow demonstrated here implies increased genetic diversity and adaptive potential in these coral species. Rare Acropora species may therefore be less vulnerable to extinction than has often been assumed because of their propensity for hybridization and introgression, which may increase their adaptive potential
    • …
    corecore